Logo der Uni Stuttgart
Introduction for Topology Setup

The following webdemo demonstrates the channel characteristics of transmission line topology (shown below). In this case, we introduce three transmission lines with same characteristic impedance $Z_\text{L}$, and corresponding arbitrary length $\ell_1$, $\ell_2$, $\ell_3$. The reflection coefficients $r_i$ are given by $r_i = \frac{Z_i-Z_\text{L}}{Z_i+Z_\text{L}}$ with $Z_1$, $Z_2$ and $Z_3$ being the impedance at the input, at the end of $\ell_2$ or at output of the line, respectively. For simplicity we assume impedance matching at input and output,that is $r_1$ = 0, $r_3$= 0, and a real variable $r_2$ at the end of $\ell_2$. Particularly for this topology ($\ell_2$ and $\ell_3$ are in parallel), we have one more reflection coefficient $r_4 = -\frac{1}{3}$ at the junction of three transmission lines. Additionally, we introduce transmission coefficient $\gamma = \alpha+j\beta$ where $\alpha$ denotes a constant attenuation coefficient, and $\beta$ is phase coefficient which is linear in $\omega$. Attenuation $\alpha$ is given in $\frac{\text{dB}}{\text{m}}$ and can be converted to $\frac{\text{Np}}{\text{m}}$ by $\alpha \big|_\frac{\text{Np}}{\text{m}} = \frac{ln(10)}{20} \cdot \alpha \big|_\frac{\text{dB}}{\text{m}}$. $\beta$ is related to the phase velocity ($v_{\text{ph}}=\frac{\omega}{\beta}$) and $\omega$ ($\omega = {2\pi f}$). Therefore, $\gamma = \alpha+j\beta = \alpha+j \frac{2\pi f}{v_{\text{ph}}}$.

This demo focuses on transfer function of each reflection iteration denoted as $H_k(f)$ as well as overall transfer function $H_{\text{sum}}(f)$ which is the sum up of all iterations ($N_{\text{iter}}$). The general expression for a single transmission line known to be $$ H(x,f) = \frac{1-r_1}{2} \sum_{n=0}^{\infty}(r_1r_2)^ne^{-\alpha(2\ell n+x)}e^{-j \cdot 2 \pi f\frac{2\ell n+x}{v_{\text{ph}}}} + \frac{1-r_1}{2}r_2 \sum_{n=0}^{\infty}(r_1r_2)^ne^{-\alpha(2\ell (n+1)-x)}e^{-j \cdot 2 \pi f\frac{2\ell (n+1)-x}{v_{\text{ph}}}} $$ The equation of individual iterations and overall transfer function [1] of the given setup are expressed as

At the end of $\ell_1$: $$ H_0(f) = \frac{1-r_1}{2} e^{-\gamma \ell_1} $$

$1^{\text{st}}$ iteration: $$ H_1(f) = H_0(f) \cdot \frac{2}{3} e^{-\gamma \ell_3} $$

$2^{\text{nd}}$ iteration: $$ H_2(f) = H_0(f) \cdot \frac{2}{3} e^{-\gamma \ell_3} \cdot \frac{2}{3} e^{-\gamma \cdot 2 \ell_2} \cdot r_2 $$

$3^{\text{rd}}$ iteration: $$ H_3(f) = H_0(f) \cdot \frac{2}{3} e^{-\gamma \ell_3} \cdot \frac{2}{3} e^{-\gamma \cdot 2 \ell_2} \cdot (r_2)^2 \cdot \left(-\frac{1}{3}\right) e^{-\gamma \cdot 2 \ell_2} $$

$4^{\text{th}}$ iteration: $$ H_4(f) = H_0(f) \cdot \frac{2}{3} e^{-\gamma \ell_3} \cdot \frac{2}{3} e^{-\gamma \cdot 2 \ell_2} \cdot (r_2)^3 \cdot \left[\left(-\frac{1}{3}\right) e^{-\gamma \cdot 2 \ell_2}\right]^2 $$

$k^{\text{th}}$ ($2 \leq k \leq N_{\text{iter}}$) iteration: $$ H_k(f) = H_0(f) \cdot \frac{2}{3} e^{-\gamma \ell_3} \cdot \frac{2}{3} \cdot (r_2)^{k-1} \cdot \left(-\frac{1}{3}\right)^{k-2} e^{-(k-1) \gamma \cdot 2 \ell_2} $$

Overall transfer function $H_{\text{sum}}(f)$: $$ H_{\text{sum}}(f) = H_1(f) +\sum_{k=2}^{N_{\text{iter}}} H_k(f) $$

In the first demo, $H(f)$ is shown per iteration (frequency flat). The overall transfer function $H_{\text{sum}}(f)$ is shown as the thick blue curve with frequency selectivity (constructive and destructive effect).

The comparison between overall transfer function $H_{\text{sum}}(f)$ and its imaginary part $\operatorname{Im}\{H_{\text{sum}}(f)\}$, as well as its absolute value $\left|H_{\text{sum}}(f)\right|$ are shown in the second and the third demo respectively.