Propagation constant $\gamma\left(\omega\right)=\sqrt{\left(R'+j\omega L'\right)\left(G'+j\omega C'\right)}=\alpha\left(\omega\right) + j\beta\left(\omega\right)$ with the attenuation $e^{-\alpha\left(\omega\right)}$ and wavenumber $\beta\left(\omega\right)=\frac{2\pi}{\lambda}=\frac{\omega}{v_{\mathrm{ph}}}$ with the phase velocity $v_\mathrm{ph}$.
Transfer function is $ F\left(x,\omega\right)=\frac{U\left(x,\omega\right)}{U_{0}\left(\omega\right)}=\frac{Z_{L}}{Z_{1}+Z_{L}}\cdot\frac{1}{1-r_{1}r_{2}\cdot e^{-2\gamma\left(\omega\right)\cdot\ell}}\cdot\left(e^{-\gamma\left(\omega\right)\cdot x}+r_{2}\cdot e^{-\gamma\left(\omega\right)\cdot\left(2\ell-x\right)}\right)$