Logo der Uni Stuttgart
Chromatic Dispersion - FIR filters

Compensation of chromatic dispersion in modern communication systems is typically done by using FIR filters as part of digital signal processing.

They can be derived by starting from the well-known transfer function $$ H\left(f\right) = \text{exp}\left\{-\mathrm{j}\frac{\beta_2}{2}\left(2\pi f\right)^2\ell\right\},\;\;\; \beta_2 =- \frac{D_\mathrm{C}\lambda_0^2}{2\pi c_0T^2}\left(\approx -21.67\,\mathrm{ps}^2/\mathrm{km}\right) $$ and using the inverse Fourier transform to get the corresponding time domain representation. Changing the value for $D_\mathrm{C}$ to $\tilde{D}_\mathrm{C} = - D_\mathrm{C}$ and inserting this yields [1] in discrete time: $$ h\left(n\right) = \sqrt{\frac{\mathrm{j}}{4K\pi}} \text{exp}\left\{\mathrm{j}\frac{n^2}{4K}\right\},\;\;\;K=\frac{D_\mathrm{C}\lambda_0^2\ell}{4\pi c_0 T^2} $$ By only using a couple of taps, the so called truncated FIR filter is obtained.

Minimizing the error caused by the truncation gives the least-squares FIR [2]. By limiting the range where allpass characteristics are needed, the filter can be further improved (pulse-shaping aware).

[1] S. J. Savory, „Digital filters for coherent optical receivers“, Opt. Express, Bd. 16, Nr. 2, S. 804, 2008
[2] A. Eghbali, H. Johansson, O. Gustafsson, und S. J. Savory, „Optimal Least-Squares FIR Digital Filters for Compensation of Chromatic Dispersion in Digital Coherent Optical Receivers“, J. Lightwave Technol., Bd. 32, Nr. 8, S. 1449–1456, Apr. 2014