Processing math: 100%
Logo der Uni Stuttgart
Log-Likelihood Ratios (L-values) for BPSK

With Bayes' rule, and s{±1} for x{0,1}, we find P[s=+1|y]=p(y|s=+1)p(y)P[s=+1]

and channel output PDF p(y|s) conditioned on the transmitted symbol s we obtain L(s|y)a posteriori L-value=lnp(y|s=+1)P[s=+1]p(y|s=1)P[s=1]=lnP[s=+1]P[s=1]a priori L-value LA(s)+lnp(y|s=+1)p(y|s=1)channel L-value Lch(s|y)=LA(s)+Lch(s|y).
The channel L-value tells us what we learn about the transmitted symbol s based on the channel observation.

For an AWGN channel with zero mean and variance σ2 (per real-/imag-component, i.e., per I-/Q-channel) the channel L-value computes as Lch(s|y)=lnexp((y1)22σ2)exp((y+1)22σ2)=2σ2y.