To put it all together, the averaged erasure probability ${x}$
of an arbitrary bit after ${l}$
iterations is
$$x^{\left[l\right]}=\varepsilon\underset{y}{\underbrace{\left(1-\left(1-x^{\left[l-1\right]}\right)^{d_{c}-1}\right)}}^{d_{v}-1}$$
with initialization
$$
x^{\left[0\right]}=1.
$$
The calculation above is called density evolution and indicates an expected BER after ${l}$
decoding iterations for infinite code length. Furthermore, the density evolution gives a threshold $\varepsilon_{BP}$
for which the BP decoder converges to an error free code word after an infinite number of iterations
$$
\varepsilon_{BP}=sup\left\{ \varepsilon\,\in\left[0,1\right]:\,\,x^{\left[l\right]}\overset{l\rightarrow\infty}{\rightarrow}0\,\,\forall x\right\} .
$$
Each check node can be connected to random variable nodes within a range of ${W}$ blocks.
We define
• ${x_{i}}$
as the averaged erasure probability of a random variable node in block ${i}$
• ${y_{j}}$
as the averaged erasure probability of a random check node in block ${j}$
The source of a message is unknown, because it can be sent from any connected check node within $W$. We assume ${d_{v}}-1$
(respectively $d_{c}-1$
) incoming messages with the averaged erasure probability of all connected ${W}$
blocks of check nodes (respectively variable nodes).
This message is broadcasted to all connected check nodes (respectively variable nodes).
The messages from VND to CND are
$$
x_{i}=\varepsilon_{i}\cdot\left(\frac{1}{W}\cdot\sum\limits_{k=0}^{W-1}y_{i+k}\right)^{d_{v}-1}.
$$
With analog considerations for the check nodes it holds
$$
y_{j}=\left(1-\frac{1}{W}\cdot\sum\limits_{k=0}^{W-1}\left(1-x_{j-k}\right)\right)^{d_{c}-1}.
$$
The initialization must be extended to
$$
x_{i}^{\left[0\right]}=1\,\,\forall i.
$$
Note that $(\mathit{i+k)}$ and $(\mathit{j-k)}$ is a circular shift, i.e. $(\mathit{j-k})$ is replaced by $(\mathit{j-k+L)}$ if $(\mathit{\mathit{j-k)<0}}$ and $(\mathit{\mathit{i+k)}}$ is replaced by $(\mathit{\mathit{i+k}}-L)$
if $(\mathit{\mathit{i+k})}\geq L$. The equations are valid for tail-biting SC-LDPC codes. For a terminated code the length must be extended to $\mathit{L'=L+W}-1$ and the last $\mathit{W-1}$ variable nodes $x_{i}$
must be initialized with zero, since the blocks are frozen and therefore perfectly known.
These update equations are more complex than the ones for block LDPC, but can be solved numerically.
Finally, the density evolution of SC-LDPC codes gives the expected local BER for each spatially position. Therefore, it is a helpful tool to visualize and investigate the BP decoding progress.